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Optimization of Geometric Structures
of New Materials on Parallel Computers:
Final Report

John H. Weare, PI, UCSD, Chemistry Ryoichi Kawai, CoPI, UAB, Physics
Beth Ong, CoPI, UCSD, Math

1 Summary

Ab initio molecular dynamics (AIMD) simulation codes based on the planewave pseudopoten-
tial local density functional method have been developed, The new planewave based code uses
significantly smaller memory and disk space. It is now written in CM Fortran and therefore
can be run on a number of different massively parallel platforms with minimal change. We
have also developed another version based on MPI. This code is running on the SP2 and will
be running on the T3E here at the San Diego Supercomputer Center.

With the new codes, it is possible to simulate geometric, dynamical, and electronic prop-
erties of molecules and polymers containing more than 200 atoms from first principle. In
addition, it allows the use of both periodic and freespace boundary conditions. -Extended
systems such as polymers can be simulated with periodic boundary conditions, whereas finite-
size systems including charged systems can be calculated with freespace boundary conditions.
Various benchmark tests demonstrate the high degree of accuracy and efficiency of parallel
processing. This code has been applied to the simulation of semiconducting polymers with
large repeat cells.

The most significant problem with the application of AIMD to a wider variety of high
performance materials is the poor convergence of the planewave basis that is used in all the
present methods. For systems that have 2nd period elements nitrogen, oxygen and flourine or
the transition metals the atom scattering potentials are very strong causing a rapid variation
in the wavefunction and requiring that small wavelengths be included in the basis. This
makes AIMD calculations very inefficient. We have been developing a new method which is
based on the direct descretation of space (vs. descretation of momentum space). There are
a number of difficulties with the application of this approach, but we believe that we have
finally identified a correct path to an efficient algorithm.

2 Introduction

For large systems of the structural and compositional complexity that is common to high
performance materials the most reliable and efficient approach to first principles calculation
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is based on the local density approximation (LDA) [10]. In this approach, the total energy
of electrons interacting with the nuclei is described as a functional of electron density and
coordinates of the nuclei. Electronic orbital wavefunctions are given by the solutions of the
generalized eigenvalue equations:

H %) =3 X | 45) 1)
i
where the Hamiltonian is given by
p?
H= (_ + Vezt + Vi + ch) (2)
2m

and A;; is a Lagrange’s multiplier which maintains the orbital orthonormality constraints,
(¥i | ¥;) = & ;. Electron-electron interaction is included in the Hartree potential, Vi, and -
the exchange correlation potential, V... Since Vy and V.. are functionals of the electron
density, Eq.(1) must be solved self-consistently.

In order to further implement the theory, it is necessary to expand % in a basis set.
Usually this basis is chosen with the particular physics of the problem in mind. For example,
a natural choice of basis functions would be planewaves for metallic systems. This choice
seems inappropriate for nonmetals. For these systems we are developing a new method based
on a very localized finite element expansion of the wavefunction. However, for any choice
of basis it is important to design the method of solution to match the architecture of the
computer. In the following we discuss our progress with both approaches.

3 Accomplishment: Direct minimization of the Kohn-Sham

equations using preconditioned conjugate gradients meth-
ods

In this project we compared various methods used in the direct minimization of the Kohn-
Sham equations. The objective is to compute the lowest energies (eigenvalues) and their
corresponding wave functions (eigenvectors) using a planewave basis set. Several variants of
preconditioned conjugate gradients are compared. They are distinguished by:

1. the basic iterative method or minimization scheme: steepest descent (SD) versus con-
jugate gradients (CG)

2. the preconditioner: the preconditioner of Teter, Payne, and Arias (TPA)[15] versus the
multilevel nodal basis (MNB){1] preconditioner. The use of a preconditioner accelerates
the convergence of the basic iterative method by first preprocessing the Hamiltonian
in the Kohn-Sham equations by its approximate inverse. The Hamiltonian consists of
the kinetic energy and potential energy terms. TPA is basically an approximation of
the inverse of the kinetic energy term in LDA on the finest/final grid, done in Fourier




space. MNB is an approximation of the inverse of the kinetic energy term on different
grid levels, done in either Fourier space or real space. Thus, both preconditioners will
work well provided the kinetic energy term remains dominant. The effect of a multilevel
approximation to the kinetic energy term (as in MNB) is to annihilate the effect of the

mesh size. Thus, MNB is expected to perform better as the mesh size diminishes; that
is, as more grid points are used.

. band-by-band (BB) versus whole band minimization (WB). Band-by-band minimiza-

tion is a procedure whereby the lowest energies and corresponding wave functions are
computed one at a time, beginning with the lowest energy, followed by the second, and
so on. The ith wave function is made orthogonal to the previous ¢ — 1 wave functions.
Whole band minimization computes all lowest energies and wave functions simultane-

ously. At the end of the procedure, the wave functions are orthogonalized through a
Gram-Schmidt process.

. exact energy (EE) versus inexact energy (IE) calculation. Exact energy calculation is

when the energy is evaluated using the new iterates of the wave functions during all steps
of the computation of the new iterates of the wave functions. Inexact energy calculation
is when the energy is calculated using the current iterate of the wave functions during the
line search in a particular CG direction. This has the effect of freezing the Hamiltonian
in the LDA at the current iterates of the wave functions.

We compare the following methods

1.

o ok W W

®© N

9.

Method CG, preconditioner MNB, WB minimization, IE calculation
Method CG, preconditioner TPA, WB minimization, IE calculation
Method CG, no preconditioner, WB minimization, IE calculation
Method CG, preconditioner MNB, WB minimization, EE calculation
Method CG, preconditioner TPA, WB minimization, EE calculation
Method CG, no preconditioner, WB minimization, EE calculation
Method CG, preconditioner TPA, BB minimization, IE calculation
Method CG, no preconditioner, BB minimization, IE calculation

Method SD, no preconditioner, WB minimization, IE calculation

In Table 1, we show the ratios of the CPU times for these different methods for Lz,,, where
n is the number of atoms, N; grid points with uniform mesh size, and random initial wave

functions. Plane wave basis and fast Fourier transform are used. The CPU time ratios are
normalized so that method 1 has value 1.



Method || Lijo, Ng = 32 | Ligo, Ny =32 | Ligo, Ng =40 | Ligo, N, = 64

1 1.000 1.000 1.000 1.000

2 0.788 1.357 fails fails

3 2.442 2.863 2.647 3.640

4 8.784 8.250 6.477 7.216

5 5.299 4.980 4.002 4.505

6 11.178 8.5563 6.097 10.007

7 7.524 14.692 21.183 no data

8 33.230 51.263 no data no data

9 13.299 9.508 no data no data

CPU time ratios

In general,
1. CG performs better than SD
2. WB minimization performs better than BB minimization
3. IE calculation reduces computation time dramatically compared with EE calculation
4. CG with preconditioner performs better than without preconditioner
5. MNB preconditioner performs better than TPA, especially as the number of atoms and

grid size increase.

Of the nine methods, method 1 (the CG method with MNB preconditioner, WB minimization,
and IE calculation) performs best.

4 Accomplishment: Adaptive Mesh Implementation

The primary disadvantage of planewave methods is that they do not readily support the adap-
tivity needed to represent the various length scales present in many materials applications.
Ideally, our basis set should adapt to local changes in the electronic charge density, such
as near atomic centers. Planewave basis functions uniformly cover the entire computational
domain and therefore preclude localization.

However, structured adaptive mesh refinement techniques in real space have been shown
to efficiently capture the multiple length scales and localized singularities for simple model
systems [2]. An adaptive method nonuniformly places computational effort and memory in
those portions of the problem domain with the highest error; thus, adaptive codes can target
systems that are difficult or infeasible to solve with the planewave approach.

We have developed a prototype LDA/LSD code based on adaptive mesh refinement meth-
ods using a finite element basis set. Computational results for some simple diatomic systems
are presented below. Our adaptive implementation is not yet competitive with the more ma-
ture planewave methods; however, we have identified changes that will improve the accuracy

and efficiency of the adaptive approach. This work has been recently been published in two
articles [7, 8]




4.1 Finite Element Discretization

We discretize the Kohn-Sham equations using finite element techniques, which has certain
advantages over competing discretization methods. Finite elements readily admit local adap-
tivity. Finite element basis functions are very localized in space, interacting only with their
immediate neighbors, and therefore do not suffer from the scaling problems of LCAO meth-
ods that use Gaussian basis sets. Discretization approaches such as finite differences or finite
volumes do not provide a consistent framework for defining operators on adaptive grid hier-
archies, resulting in nonsymmetric operators and complex Kohn-Sham eigenvalues.
The finite element approach expands the wavefunctions ¢ in a basis set {¢;}:

N
Y(z) =) cidilz)
=1
and the Kohn-Sham equations are discretized using a Ritz formulation, resulting in the fol-
lowing nonlinear eigenvalue problem:

—;—/V¢>,~(w)V¢(x)+/¢,~(m)z/)(:c)V(m) =e/¢,~(z)¢(x), i=1,...N.

Note that we have shown only one wavefunction 9 to simplify the notation; the full Kohn-
Sham equations involve a set of ¥ coupled through the charge density and V. Our current

code uses a 3d trilinear basis element ¢; and approximates the rightmost two integrals in the
above equation using the mid-point integration rule.

4.2 Structured Adaptive Mesh Refinement

Traditionally, finite element calculations have been implemented using unstructured data types
(e.g., a graph), so called because the data representations do not exploit local structure in
the adaptive mesh. Connectivity information must be stored for each unknown at greatly
increased cost in memory overheads. Furthermore, unstructured methods make poor use of
memory and cache locality and typically do not parallelize well since connectivity information
must be distributed across processor memories. '

The basic idea behind structured adaptive mesh refinement is that if one element requires
refinement, then it is likely that neighboring elements will be refined also. Thus, we can exploit
this localized structure to reduce memory overheads and improve performance. Structured
adaptive mesh refinement methods represent partial differential equations using a hierarchy
of nested, locally structured grids. All grids at the same level of the hierarchy have the same
mesh spacing, but successive levels have finer spacing than the ones preceding it, providing a
more accurate representation of the solution (see Figure 1).

Instead of storing connectivity information for each unknown, structured methods store
connectivity information for each refinement patch, which in turn may contain many thou-
sands of unknowns. Refinement patches can be represented in a few tens of bytes; thus,

in parallel implementations, structure information is replicated across processor memories,
improving parallel performance.



Numerical computations on structured adaptive meshes consist of efficient array-based cal-
culations on refinement patches and “fix-up” computations on the boundaries of the patches.
In our particular application, the time spent on boundary computations is only about 10-20%
of the time spent on patch interiors. Finally, a structured representation enables us to

use highly efficient multilevel solvers such as the FAC (Fast Adaptive Composite) multigrid
method [12] (see Section 4.4.1).

4.3 Parallel Software Support

Adaptive mesh methods are difficult to implement on parallel architectures because they rely
on dynamic, complicated data structures with irregular communication patterns. On parallel
platforms, the programmer is burdened with the responsibility of managing data distributed
across processor memories and orchestrating interprocessor communication and synchroniza-
tion. Refinement regions vary in size and location in the computational space, resulting in
complicated geometries. Communication patterns between grid patches and between grid lev-
els are irregular and change as the hierarchy is modified. Because adaptive mesh applications
change in response to the dynamics of the problem (e.g., as atoms move during structure opti-
mization), little can be known about the structure of the computation at compile-time. Thus,
decisions about data decomposition, the assignment of work to processors, and the calculation
of communication patterns must be made at run-time. These implementation difficulties soon
become unmanageable and can obscure the mathematics behind the algorithms.

To simplify the development of structured adaptive mesh applications, we have developed
an object-oriented adaptive mesh software framework in C++ that provides computational
scientists with high-level support for structured adaptive mesh applications. Our framework
manages mundane details such as interprocessor communication, parallel execution, load bal-
- ancing, and grid generation (see Figure 1). We have based our adaptive mesh software on
previous work by Kohn and Baden (Department of Computer Science and Engineering, Uni-
versity of California at San Diego) {9]. Our framework allows scientists to concentrate on the
high-level expression of mathematical methods rather than being concerned with the under-
lying parallel implementation details. It enables us to run our applications on a variety of
parallel performance computers, including the CRAY T3D, ASCI Blue Machine, IBM SP2,
architectures supporting MPI, and networks of workstations.

In addition to simplifying the code development in our own project, our software frame-
work and numerical methods are applicable to other fields of science and engineering of interest
to the Air Force where it is important to track localized physical phenomena with high accu-
racy. We are currently talking with applications scientists at Lawrence Livermore National
Laboratories about applying our adaptive software technology to the solution of multiscale
problems in computational fluid dynamics and crack propagation.

4.4 Numerical Solvers

The adaptive real-space method is sufficiently different from the planewave approach that new
types of numerical algorithms are required. For example, the Hartree calculation (needed to




Level 2 il i

_________________

IrregularGrid
Level 1 I I O
R
| | | | | | |
Level0 | | | | | l |
; id | | T 1 | |
Composite Grid | l 10 11 | |
| Data Type || Description
Grid Grid represents a single refinement patch in the adaptive grid hierarchy. Grid

computations are typically performed in serial numerical routines.

IrregularGrid represents one level in the adaptive mesh hierarchy. Grids in
. an IrregularGrid are distributed across processors, and applications com-
IrregularGrid R . . c s
pute over these Grids in parallel. IrregularGrid provides communication
routines to fill boundary cells for Grids at the same level of refinement.

CompositeGrid represents the entire adaptive mesh hierarchy. It provides
CompositeGrid || mechanisms to communicate between levels and to create new refinements
through error estimation, grid generation, and load balancing.

Figure 1: Our object-oriented adaptive mesh refinement framework represents the structured
adaptive hierarchy (a composite grid) using three basic classes: a Grid, an IrregularGrid,
and a CompositeGrid. A CompositeGrid consists of IrregularGrid objects organized into
levels. Each IrregularGrid is a collection of Grids.

compute the V(z) term in the Kohn-Sham equations) is trivial in Fourier space but not
straight-forward in real space. In this Section, we describe some of the algorithmic advances
we have made in implementing our adaptive solver.

One of the difficulties of the adaptive approach is that the conditioning of the Kohn-Sham
equations is dependent on the number of levels of refinement in the adaptive mesh hierarchy.
As shown in Figure 2a, iterative methods such as unpreconditioned conjugate gradients require
twice as many iterations to converge with each new level of adaptive refinement (assuming
a mesh refinement factor of two). Typical adaptive mesh computations such as the ones
presented in Section 4.5 need between two and four levels of adaptive refinement, resulting in
between two and sixteen times more iterations for a naive solver. Thus, practical and efficient
implementations of the adaptive method require more sophisticated numerical algorithms.
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Figure 2: These graphs compare the convergence of (a) an unpreconditioned conjugate gra-
dient method with (b) a multigrid-preconditioned conjugate gradient solver as the number
of levels of adaptive refinement is varied. Preconditioning becomes more important with
increasing levels of refinement.

4.4.1 FAC Multigrid

The multigrid method is a highly efficient and practical solver for many elliptic partial differ-
ential equations. Multigrid is optimal in the sense that it converges in a constant number of
iterations independent of the size and conditioning of the linear system of equations.

We have implemented a multigrid preconditioner to accelerate the solution of the Hartree
problem. We use a variant of multigrid for structured adaptive mesh hierarchies called FAC
(Fast Adaptive Composite) [12]. The advantage of FAC over competing adaptive multigrid
methods is that it provides a consistent framework for defining the composite grid operator
at interfaces between fine and coarse grids.

Figure 2b illustrates the performance of our Hartree solver with the FAC preconditioner.
(Although we could use FAC by itself without CG, the conjugate gradient wrapper provides
some extra stability to the iterative solver.) Preconditioning significantly reduces the time
to solution, especially for adaptive mesh hierarchies with many levels of refinement. For
example, for an adaptive mesh with six levels, the FAC solver reduces the Hartree residual by
more than twenty orders of magnitude in the same time that the standard conjugate gradient
method reduces it by only two orders of magnitude.

4.4.2 Rayleigh Quotient Minimization

The same types of condition number scaling described in the previous Section for the Hartree
equation also apply to the Kohn-Sham eigenvalue problem. A naive iterative method such



as steepest descent would require too many iterations to converge for the adaptive approach.
Therefore, we use an eigenvalue solver technique developed by Longsine and McCormick called
Simultaneous Rayleigh Quotient Minimization with Subspace Diagonalization [11].

The basic idea behind this approach is to take iterative steps that minimize the Rayleigh

Quotient: |
_ [ YHY

where  is the Hamiltonian of the Kohn-Sham equations. At each step of the algorithm, we
choose one wavefunction t; and take a step Y% ¢+ 9; + ad, where o minimizes the Rayleigh
Quotient for that wavefunction:

min RQ(¢i + ad).

If we assume that the Hamiltonian operator is approximately linear about the location ;,
then we can compute the step size « efficiently without a nonlinear search. The step directions
d are generated via a CG-like process.

4.5 Computational Results

To validate the adaptive mesh refinement approach, we have applied our adaptive techniques
to some simple diatomic problems whose LSD solutions are known. Figure 3 illustrates LSD
results and Morse fits for Be;, Lis, BeF, and F;. All computations were performed using
unfiltered Hamann pseudopotentials.

The Be, and Li, systems are easily calculated using the planewave approach, and our re-
sults match the planewave solutions. BeF is an example of a material with two very disparate
length scales: the Be pseudopotential is very soft and delocalized whereas the F pseudopoten-
tial is very stiff and localized about the nucleus. Computations with an unfiltered Hamann
fluorine pseudopotential would require grids of size 1282 or larger for the planewave method
as compared to an equivalent of about 703 for the adaptive method.

The oscillations in the solution about the Morse fit for BeF and F, are due to accuracy
limitations in our current implementation of the adaptive method. We are currently using
only second order finite elements, and our mid-point integration scheme does not preserve
the variational nature of the finite element formalism. In the following Section, we discuss

future development efforts that will improve the accuracy of our adaptive code and reduce
these spurious oscillations.

4.6 Analysis and Future Research

We have implemented an adaptive mesh refinement real-space code that solves the LDA/LSD
equations for materials design. In doing so, we have developed a reusable object-oriented
software framework for parallel adaptive methods and have employed several sophisticated
numerical techniques. We do not yet believe that our current adaptive code is competitive
with the best LCAO or planewave methods; however, below we identify changes that will
improve the accuracy and computational speed of our adaptive approach.
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Figure 3: Sample adaptive LSD calculations for various diatomic molecules: (a) Bez, (b) Liz,
(c) BeF, and (d) F;. The Morse curve values were calculated by taking a least squares fit of
the LDA data to the standard diatomic Morse energy profile.
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Figure 4: This graph shows the convergence in total LDA energy as a function of stencil
order and mesh spacing for a Be; molecule. These results suggest that a sixth order O(hS)
stencil requires approximately half as many points (40 vs. 75 in each dimension) as a second

order O(h?) stencil for the same millihartree accuracy. In three dimensions, this represents
an eight-fold reduction in mesh size.

4.6.1 Higher Order Finite Elements

Our current adaptive solver uses 3d trilinear elements that are O(h?) accurate; these types of
elements are commonly used in the finite elements applications community. Unfortunately,
this low order means that we must use numerous mesh points to obtain the millihartree or
better accuracy desired for materials calculations. Figure 4 illustrates the slow convergence
in energy for the second order method as compared to the higher order methods. These
results were calculated for Be; on a uniform computational grid. For millihartree accuracy,
the second order method requires eight times more points (in 3d) than a sixth order method.
Equivalently, for the same number of grid points, a sixth order method can provide 0.01
millihartree accuracy as compared to only millihartree accuracy for the second order method.

We are currently developing an adaptive method that employs higher order elements to
improve the accuracy of the method and reduce memory requirements. We plan to use either
fourth or sixth order Hermite elements. Higher order methods should have the additional

benefit of reducing the number of levels of refinement and thus improving the condition
number of our numerical problems.
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4.6.2 Eigenvalue Solver Preconditioning

The computational results in Section 4.4.1 illustrate how a good preconditioning method can
significantly reduce the iteration count and thus time to solution. Although we have been
successful in developing good preconditioning techniques for the Hartree calculation, we have
not as yet developed an efficient preconditioner for our eigenvalue solver (see Section 4.4.2).
Our Rayleigh Quotient solver is more efficient than a steepest descent approach, but it
still suffers from scaling problems with additional refinement levels. We are actively pursuing
a multilevel preconditioning technique to reduce the number of iterations needed by the
eigenvalue algorithm. We are considering either a multigrid preconditioner or a multilevel
nodal basis preconditioner {1]. Experiments by Sung, Ong, and Weare [14] for planewave
methods show the effectiveness of multilevel preconditioners for the eigenvalue equations.

5 Accomplishment: Parallel Planewave Implementation of AIMD

Using a planewave basis set, the Kohn-Sham equations, Eq.(1), may be implemented very
efficiently. Large numbers of basis functions are required even when pseudopotentials are
used. However, the computational cost of this is offset by the high parallelism and efficient
vectorization of the algorithm. Broadly speaking the implementation of planewave LDA

requires data parallel operations, array reductions and Fast Fourier transforms. Each of these
are discussed below.

5.1 Data Parallel Operations

Many mathematical operations in planewave based LDA calculations are data parallel oper-
ations such as X = aX +Y where X and Y are vectors with a large number of components.
Since each component can be computed independently, these types of operations are very
efficient on almost any platforms. Many RISC workstations (e.g., IBM and Silicon Graphics
workstations) and vector machines such as CRAY provide very efficient routines, Basic Linear
Algebra Subroutines (BLAS) tuned for their architectures. OQur code takes full advantage of
these routines. Furthermore, data parallel operations are perfectly parallelisable without any
interprocessor communication. This is why the planewave method is easily parallelized.

5.2 Array Reductions

Our implementation of AIMD also uses a lot of array reduction operations such as dotproduct
of two large vectors. All reduction operations used in our AIMD are vectorizable on CRAY.
The BLAS routines tuned for RISC and vector architectures include these routines. There-
fore, these operations are performed very efficiently on RISC and vector machines. On the
other hand, array reduction requires interprocessor communications on parallel machines or
networks of workstations, which may cost significant cputime on distributed-memory parallel

machines. Fortunately, the CM-5 has very efficient routines to carry out these operations in
the high performance Fortran language.
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5.3 Fast Fourier Transform

The efficiency of the current AIMD code relies on 3D fast Fourier transformation (FFT)

method. On serial processor machines such as RISC and vector machines, the multi-dimensional
FFT is essentially same as a series of 1D FFT. Very efficient FFT routines are available on

these platforms. On massively-parallel distributed-memory machines, 3D FFT is inefficient

due to heavy interprocessor communication. However, if the array data is properly dis-

tributed, the multi-instance multi-dimensional FFT routines on CM-5 is remarkably fast.

Unfortunately, such a fast FFT is not available on other massively parallel computers at

present. We are currently developing an efficient 3d FFT for MIMD parallel computers.

5.4 Language Consideration

The serial version of our AIMD code was originally written in standard Fortran 77 whereas
the parallel version uses a kind of high performance fortran (Fortran 90 + some extension). It
is desirable to write a portable code that runs on any advanced vector computers, massively
parallel machines and networks of workstations without major modification. We expect that
high performance fortran will be soon available on most massively parallel platforms. Since
Fortran 90 is close to high performance fortran and the CM Fortran, we are writing new
code using standard Fortran 90. Machine-dependent extensions to Fortran 90 will be used
if they are necessary to archive required computational efficiency. The new code has been
tested on the Connection Machine model 500 (CM-500) at Naval Research Laboratory (NRL)

and model 5 (CM-5) at Army High Performance Computing Resource Center(AHCRC) using
CM-fortran 2.3.

5.5 Performance Tests

The computational efficiency of the new.code is tested by computing a chain of polyacetylene
using periodic boundary condition. Instead of evaluating density at many k points in the
. Brillouin zone, more than one repeat units are placed in a large unit cell. This system is
computationally one of the worst because a large unit cell is needed to isolate the chain
from nearest neighbors. Furthermore, we used radix-2 FFT because mixed-radix FFT is not
available on most parallel platforms at present. For a more densely packed system and with
mixed-radix FFT available on certain platforms, higher performance can be obtained.

5.5.1 Computational Efficiency: Memory Usage

The size of planewave basis used for this test is shown in Figure 5a. The size of corresponding
real space grids is given in the Figure. Previously, both the wavefunction in momentum space
and in real space are kept in memory. Since the real space wavefunction consumes significant
amount of memory, it was not possible to calculate {C H]g4 because of memory overflow. Now,
it is possible to compute up to [C'H];2s, which involves as many as 360 electrons per spin.
We successfully reduced the memory usage in the new code which requires only 1/3 - 1/2
of memory previously required. Figure 5b displays the amount of memory used on 32-PN and
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Figure 5: (a) Size of planewaves and (b) memory usage of ab initio molecular dynamics

simulation for [CH]n chains. The numbers in the left figure are the corresponding grid sizes
in real space.

256-PN CM-500 as a function of the number of repeat units. For large N, the memory usage
should scale N2 since both the number of basis functions and the number of electrons increase
linearly. Figure 5a indicates that at N=128, the memory usage is nearly in proportion to N2.
Therefore, the memory usage becomes a major problem with planewave method above this
size. However, chains of these sizes are large enough to simulate the properties of realistic

polymers with various defects (kinks, dopants, .etc.) We will carry out such simulation in the
near future.

5.5.2 Computational Efficiency II: Speed

Reduction of memory usage increases the number of interprocessor communications, which
may require additional cputime. Figure 6 shows the cputime usage per molecular dynamics
time step as a function of the chain length. In order to perform a significant period of
simulation the cputime per step must be less than a few minutes. The new code is fast
enough to perform dynamical simulation of [CH)e4. Although further improvement in speed
for [C H], 28 is desired, limited simulation can be done for this size. Using the mixed-radix FFT
library routines now available on CM-500, it is possible to reduce the cputime significantly
for large systems.

Since the number of floating operations in the planewave method is proportional to N3,
the cputime also scales N3 at large N. In principle, N 3_scaling is valid on parallel machines
when N is sufficiently large. However, because of interprocessor communication and other
complications in massively parallel operations, our new code does not scale N3 but nearly N2
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Figure 6: CPU time usage of ab initio molecular dynamics simulation for [C H]y chains.

for the size of systems we are interested in. This is because for small systems routines scaled
as N2?log N are dominant.

5.5.3 Degree of Accuracy

The high degree of accuracy of our methods has been discussed in the literature. [4, 5,
6, 13, 3] Our previous code has been independently tested at Wright-Patterson Air Force
Base and shown to be very accurate. To demonstrate the accuracy of our new capability to
calculate charged species we calculated the ionization potential (I) of Beryllium atom from
the energies of neutral atom and positive ion. Our result of .330au compares well with the
experimental value of .343au and with the other calculated values in the literature. We also
calculated the electron affinity (A) of Chlorine atom. We obtained A = 3.9¢V. Agreement
with the experimental value (3.6eV) is marginal but accurate enough to predict many chemical
processes. Generally speaking, the calculation of negative ions is harder than that of neutral
atoms or positive ions. We have now implemented a generalized gradient correction method
which is expected to improve the electron affinity calculation.

5.6 Applications

Developing highly conducting polymers holds a high priority in Air Force Materials Research.
Therefore, we will apply our AIMD method to conducting polymers. We begin with polyacety-
lene and a polymer based on squarelene. However, our applications will be extended to many

other chemical systems. In the following, we show preliminary results of squarelene-based
polymers.
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Figure 8: Valence electron density of the trimer, CH3 — [C10H202S2]s — C7HsS,

5.6.1 Narrow-Gap Polymers based on Squarelene

A polymer based on a squarelene and fused thiophenes shown in Fig.7 is a candidate of
narrow-gap semi-conducting polymer. An accurate band-gap as a function of polymer length
is important to understand the electronic properties of these polymers. However, because of
its large repeat unit, it is too expensive to apply an accurate CI method. On the other hand,
the Hartree-Fock method may not provide sufficient accuracy. If the band gap is evaluated
from HOMO-LUMO gap, HF overestimates the gap substantially whereas LSD significantly
underestimates it. The singlet-triplet excitation energy approaches to the band gap as the size
increases, if many-body effects do not play a significant role. Since LSD accurately predicts
the singlet-triplet excitation energy, we estimate the band gap by calculating both singlet and
triplet state energy.

Oligomers up to trimer (Fig. 7) are calculated. The largest system contains 250 electrons.
A supercell of 77 x 16 x 10 box and 256 x 64 x 32 grid points are used. About 200,000 basis
functions per orbital is needed to get converged results. The electron density on the molecular
plane (Fig. 8) indicates no clear alternation in bond order. Singlet-triplet excitation energy
plotted in Fig. 9 suggests that the band gap of an infinite chain will be less than 0.5eV.
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